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The temporal stability of swept attachment-line boundary layer flow based on a
swept Hiemenz flow model is studied. Starting from the global stability problem and
motivated by analytical free-stream solutions, a Hermite expansion is employed in the
chordwise coordinate direction which results in coupled local stability problems. A
complete study of the temporal spectrum is presented and the discrete and continuous
modes are classified according to their symmetry, chordwise polynomial order and
asymptotic decay. Uniform, Görtler–Hämmerlin and higher-order modes are described
in detail. Estimates are given for the location of the continuous spectrum, and bounds
are derived for the validity of the linear approximation.

1. Introduction and background
Swept attachment-line boundary layer flow results when a uniform flow impinges

on a blunt body whose axis forms an angle to the incoming flow. One of the most
important applications is the flow near the stagnation line of swept wings.

In the 1950s experiments on swept wings with laminar airfoils detected the problem
of early boundary layer transition (Gray 1952a, b). Under certain conditions the
transition front of the boundary layer moved up to the attachment-line region which
made it impossible to maintain laminar boundary layers over large areas of the wing.
The result of this research pointed towards a critical dependence of the attachment-
line region on the lift characteristics of a swept-wing airplane.

More than a decade later, experimental studies of laminar flow control demonstrated
that control systems that provided suction through a perforated wing surface were not
capable of laminarizing the boundary layers, once turbulent leading-edge boundary
layers were established (Pfenninger 1965; Gaster 1967). Gaster (1965) pointed out
that turbulent flow may be fed into the leading-edge boundary layer through the
wing–fuselage junction. He suggested the use of a device (subsequently known as the
Gaster bump) that decelerates the flow locally, in the wing root area, in order to
relaminarize the incoming flow.

In the years following these early efforts many experimental studies have been
undertaken (Gregory 1960; Gaster 1967; Cumpsty & Head 1969; Pfenninger 1977;
Pfenninger & Bacon 1969) and cross-flow instabilities were suspected of being
responsible for the early boundary layer transition. Poll (1979) was the first to establish
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a clear distinction between cross-flow mechanisms and instability mechanisms of the
leading-edge boundary layer. His experiments on an immersed swept cylinder paved
the way for theoretical developments.

Theoretical efforts on the attachment-line boundary layer go back to 1911 when
Hiemenz (1911) presented in his dissertation a solution to the plane viscous stagnation-
point flow which came to be known as plane Hiemenz flow – a widely accepted local
model for the attachment-line flow at high Reynolds numbers. The stability of plane
Hiemenz flow was first studied by Görtler (1955) and Hämmerlin (1955). They
conjectured that a centrifugal instability mechanism (Görtler 1941) could render this
flow unstable. However, the complex structure of this flow did not allow the use
of standard techniques of linear stability theory and the reformulation into a Orr–
Sommerfeld equations. In order to obtain an analytically tractable problem, they chose
perturbations that exhibit the same chordwise structure as the base flow (hereafter we
will refer to this model as the Görtler–Hämmerlin model). This somewhat arbitrary
model was justified only much later by numerical results of Spalart (1988). In addition,
Hämmerlin (1955) concluded that there exists a continuous spectrum of stationary
perturbations on the real axis of the spanwise wavenumber plane.

This result was later clarified by Wilson & Gladwell (1978). They pointed out that
Hiemenz flow supports two types of disturbances: disturbances that decay algebrai-
cally, and disturbances that decay exponentially in the wall-normal direction outside
the boundary layer. They argued that algebraically decaying disturbances must be
excluded from a physically relevant solution for several reasons (one being the
exponential decay of the vorticity in the swept Hiemenz flow itself) and went on
to show that the exponentially decaying modes are always stable and that they
form a discrete spectrum. The continuous spectrum of Hämmerlin, so they reported,
consists only of algebraically decaying modes, which they deemed irrelevant. Similar
reservations about algebraically decaying modes were put forward by Kestin & Wood
(1970) who noted that Hiemenz flow is an over-idealized model for the attachment-line
flow.

Lyell & Huerre (1985) confirmed the linear results of Wilson & Gladwell (1978).
They also presented nonlinear results using a dynamical system based on a truncated
Galerkin expansion, which suggested that the flow is unstable to disturbances of large
amplitude.

Further work on plane Hiemenz flow was done by Brattkus & Davis (1991). They
showed how the Görtler–Hämmerlin model can be generalized for plane Hiemenz
flow by expanding the perturbations in a series of chordwise Hermite polynomials.
Algebraically decaying modes were further investigated by Dhanak & Stuart (1995).
They showed how cross-stream vorticity in the external flow can be matched to modes
that grow algebraically in the wall-normal direction. This result clearly demonstrates
that modes with algebraic decay (or even growth) cannot be eliminated from a
complete analysis of Hiemenz flow.

Until the work of Dallmann (1980) and Hall, Malik & Poll (1984), studies of attach-
ment-line flow for swept wings and investigations of plane Hiemenz flow were two
rather separate fields of research. Dallmann (1980) was able to recast the global
stability problem of an immersed swept cylinder into a system of separable problems in
which the Görtler–Hämmerlin model is but one of many chordwise modal structures.
Hall et al. (1984) studied a flow that consisted of plane Hiemenz flow with an
additional spanwise velocity component. This flow is known as swept Hiemenz flow,
and is a model for the swept leading-edge boundary layer. Using the Görtler–
Hämmerlin model they derived an eigenvalue problem for swept Hiemenz flow and
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showed that this flow becomes unstable beyond a certain critical Reynolds number
Rec = 583.1. This result emphasizes the difference between two- and three-dimensional
flows. Whereas plane Hiemenz flow was shown to be linearly stable, Hall et al. (1984)
showed that introducing sweep flow can render this flow unstable. The authors were
able to match their results to experimental results of Pfenninger & Bacon (1969) and
Poll (1979). Following the work of Grosch & Salwen (1978) they further suggested
the existence of a continuous spectrum of modes that decay algebraically in the free
stream, similar to Hämmerlin’s result for plane Hiemenz flow. This important work
was followed by a weakly nonlinear study (see Hall & Malik 1986) where a subcritical
instability was found. However, Spalart (1988), who presented the first three-dimen-
sional direct numerical simulation (DNS) of this flow, was not able to reproduce such
an instability. In a similar effort, neither Jiménez et al. (1990) nor Theofilis (1998),
using two-dimensional DNS codes, could find Hall & Malik’s solution. A subcritical
instability has only been numerically observed by Joslin (1995), who presented results
of a DNS with a spatial treatment of the spanwise direction.

Besides the studies based on direct numerical simulations of swept Hiemenz flow,
many authors have presented further theoretical and experimental results on the swept
leading-edge boundary layer. Hall & Seddougui (1990) studied perturbations other
than Görtler–Hämmerlin modes in the asymptotic limit of large Reynolds numbers.
Criminale, Jackson & Lasseigne (1994) studied the evolution of disturbances in
inviscid stagnation-point flow, both planar and swept. Their results confirmed the
findings of previous authors, i.e. that the two-dimensional flow is always stable and
that the three-dimensional flow is susceptible to instabilities. This result is remarkable
considering that it was obtained using inviscid theory. Theofilis (1995) addressed the
spatial stability problem and Türkyilmazog̃lu & Gajjar (1999) found swept Hiemenz
flow to be susceptible to an absolute instability in the chordwise direction.

Lin & Malik (1996) were the first to present full modal solutions of swept Hiemenz
flow that deviate from the Görtler–Hämmerlin model. They found modes with higher-
order polynomial dependence in the chordwise direction. However, no method
was presented to find these modes apart from solving the global stability problem
directly – a prohibitively expensive task.

Bertolotti (1999) addressed the global stability problem in a different way. Similar
to the idea of Brattkus & Davis (1991), he expanded the flow into a series of confluent
hypergeometric functions in the chordwise direction. He was then able to confirm
the polynomial modes of Lin & Malik (1996), and, in addition, find a new type of
modal solution that can be connected to stationary cross-flow vortices. These new
solutions relate to an earlier observation of Spalart (1988), who obtained solutions
from a direct numerical simulation that were reminiscent of cross-flow vortices.

Despite a significant effort directed toward swept Hiemenz flow many features of
this flow remain poorly understood, and it seems fair to state that our current
knowledge of the stability characteristics of swept-leading-edge boundary layer flow
lags behind our achievements in the field of parallel bounded shear flows. This is
primarily due to the complex structure of swept Hiemenz flow. Most established
techniques are not directly applicable and, as will be shown in this work, typical
results are more involved than analogous findings for parallel shear flows. The goal
of this work is then to lay the groundwork for a complete linear stability theory for
swept-leading-edge boundary layer flow. Beginning with a formulation of the global
stability problem for swept Hiemenz flow we will use asymptotic free-stream results
to derive the appropriate chordwise dependence that will allow the separation of the
global problem into (coupled) local ones. We will then discuss the nature of the full



4 D. Obrist and P. J. Schmid

u

v w

y

x

AL

z

W�

V�

Figure 1. Sketch of geometry for swept attachment-line boundary layer flow.

spectrum, including discrete as well as continuous parts, and classify the modes based
on their symmetry, asymptotic behaviour and chordwise dependence. All theoretical
findings are confirmed by direct numerical simulations. In Part 2 (Obrist & Schmid
2003), we will discuss results of a non-modal analysis and touch upon receptivity
issues based on the adjoint stability equations.

2. The global stability problem
We consider a local model for the flow near the upwind attachment-line of a swept

wing. The blunt leading edge of the wing is modelled as a flat wall upon which
the incoming flow impinges perpendicularly. We set the Cartesian coordinate system
(x, y, z) relative to the wall, with y as the normal direction pointing upstream and x

as the chordwise coordinate direction pointing away from the attachment line. The
z-axis points in the spanwise direction (see figure 1).

We define a length scale δ∗ = (ν∗/S∗)1/2, where ν∗ is the kinematic viscosity and S∗

is the strain rate of the irrotational outer flow. With the free-stream sweep velocity
W ∗

∞ the Reynolds number is defined as

Re =
W ∗

∞δ∗

ν∗ .

If we neglect the sweep flow, the outer flow field close to the stagnation point is
described to first order by the stream function Ψ = xy (Wilson & Gladwell 1978). The
sweep flow can be superimposed later without changing the results. The appropriate
boundary conditions for the inner solution are

u = v =
dv

dy
= w = 0 at y = 0,

dv

dy
= −1 w = 1 as y → ∞.

It is also consistent with the outer flow to make u linearly dependent on x, and v

and w a function of y only. If we substitute this into the incompressible Navier–Stokes
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equations we obtain the following system of ordinary differential equations:

U + V ′ = 0, (2.1a)

V ′′′ + (V ′)2 − V V ′′ − 1 = 0, (2.1b)

W ′′ − V W ′ = 0, (2.1c)

with ′ denoting differentiation with respect to y. The flow field is then given in the
form

(u, v, w) = (Re−1xU, Re−1V, W ). (2.2)

This flow is known as swept Hiemenz flow. It is an exact solution to the incom-
pressible Navier–Stokes equations. It matches the outer flow field and describes the
boundary layers in the chordwise and spanwise direction. The thickness of the chord-
wise boundary layer given in non-dimensional units is about 2.4, whereas the spanwise
boundary layer has a thickness of about 3.05. Unlike for a flat plate the boundary
layer thickness does not change downstream. As (2.2) is only a valid solution in the
region of the attachment line we have to bound the domain under investigation in
the chordwise direction accordingly.

It is important for the later analysis to derive the asymptotic behaviour of the mean
flow as the normal coordinate y tends to infinity. We obtain to leading order

V ∼ −y, (2.3a)

V ′ ∼ −1, (2.3b)

U ′, V ′′, W ′ ∼ e−y2/2. (2.3c)

The global stability problem is derived by perturbing the laminar state, i.e. swept
Hiemenz flow, by the small velocities (u′, v′, w′),

(u, v, w) = (Re−1xU + u′, Re−1V + v′, W + w′).

These expressions are substituted into the Navier–Stokes equations which are then
linearized. Separability of the spanwise (z) coordinate and time (t) calls for solutions
of the form 

u′(x, y, z, t)

v′(x, y, z, t)

w′(x, y, z, t)


=


û(x, y)

v̂(x, y)

ŵ(x, y)


 eiβ(z−ct).

Standard algebraic and differential manipulations of the equations allow us to
eliminate the pressure perturbation p̂ as well as the spanwise velocity perturbation
ŵ. The following two equations for the normal and chordwise velocity components
result:

(L + V ′ + iβRe c)
[(

∂2
x − β2

)
û + ∂x∂yv̂

]
+ (iβReW ′∂x − β2xV ′′)v̂ = 0, (2.4a)

(L − V ′ + iβRe c)
[(

∂2
y − β2

)
v̂ + ∂x∂yû

]
−

(
iβReW ′∂x − xV ′′∂2

x

)
û

+ (iβReW ′′ + xV ′′∂x∂y)v̂ = 0, (2.4b)

with

L ≡ ∂2
x + ∂2

y + xV ′∂x − V ∂y − β2 − iβReW. (2.5)
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Introducing the perturbation vorticities (ψ̂, ω̂, θ̂) and using the identities

−iβψ̂ =
(
∂2

y − β2
)
v̂ + ∂x∂yû, (2.6a)

iβω̂ =
(
∂2

x − β2
)
û + ∂x∂yv̂, (2.6b)

we are able to rewrite equations (2.4) in the more compact form

(L + V ′ + iβRe c)ω̂ − (ReW ′∂x + iβxV ′′)v̂ = 0, (2.7a)

(L − V ′ + iβRe c)ψ̂ −
(

ReW ′∂x +
i

β
xV ′′∂2

x

)
û +

(
ReW ′′ − i

β
xV ′′∂x∂y

)
v̂ = 0. (2.7b)

Together with the boundary conditions

û = v̂ = ∂yv̂ = 0 at y = 0 and ∞, (2.8)

these two equations constitute the global eigenvalue problem for swept Hiemenz flow.
Close inspection shows that equation (2.4a) is even in x for û and odd in x for v̂,

and vice versa for (2.4b), which allows the introduction of a set of solutions with û

even and v̂ odd in x (which we shall call the even solutions) and a set with odd û

and even v̂ (which we shall call the odd solutions).

2.1. Asymptotic behaviour as y → ∞
We will next seek to separate the perturbation velocities into an x-dependent and a
y-dependent part. The behaviour of the global solutions as y tends to infinity will
guide us in choosing the appropriate decomposition.

As the normal coordinate y tends to infinity we can make use of the asymptotic ex-
pressions for the base flow (2.3). We drop all terms in (2.7) that are (super-) expon-
entially small and find

(L̄ + 1)ψ̂ = 0, (2.9a)

(L̄ − 1)ω̂ = 0, (2.9b)

with

L̄ = ∂2
x + ∂2

y − x∂x + y∂y − σ, (2.10a)

σ = β2 + iβRe(1 − c). (2.10b)

In this new eigenvalue problem only the chordwise and wall-normal components
of vorticity, ψ̂ and ω̂, appear explicitly. The equations are only valid outside the
boundary layer and are equivalent to the eigenvalue problem obtained for an inviscid
swept stagnation-point flow. Solutions to this problem will be called free-stream
solutions.

The operator L̄ is separable and therefore the solution of (2.9) is straightforward.
We find

ψ̂1,2 ∼ Hem(x)e−y2/4

{
D−(σ+m)(y)

Dσ+m−1(iy),
(2.11a)

ω̂1,2 ∼ Hen(x)e−y2/4

{
D−(σ+n+2)(y)

Dσ+n+1(iy),
(2.11b)

where Hen(x) is the Hermite polynomial of order n and Dν(y) is the parabolic
cylinder function of order ν (Abramowitz & Stegun 1965). We will establish later that
n=m + 1 ≡ N .
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As y → ∞ the solutions decay like

ψ̂1,2 ∼ HeN−1(x)

{
y−(σ+N−1)e−y2/2

yσ+N−2,
(2.12a)

ω̂1,2 ∼ HeN (x)

{
y−(σ+N+2)e−y2/2

yσ+N+1.
(2.12b)

We observe two fundamentally different types of decay as y tends to infinity: either the
solutions decay algebraically or they decay like exp(−y2/2), i.e. super-exponentially.
Since all modal solutions in the free stream are linear combinations of (2.11), we
can classify modes into algebraically decaying and super-exponentially decaying. The
trivial solution is also a valid class in which case the modal solution has vorticity in
the boundary layer but not in the free stream.

3. Coupled local stability problems
We are now in a position to further manipulate the global stability problem. To this

end we assume the solutions to the global stability problem to be analytic functions.
Therefore it is possible to write û and v̂ as Taylor series in x,

û(x, y) =

∞∑
n=0

xnûn(y), v̂(x, y) =

∞∑
m=0

xmv̂m(y). (3.1)

We could substitute these expansions into (2.4), collect the coefficients of corres-
ponding order and obtain an infinite system of ordinary differential equations in y.
However, it is more promising to employ a Hermite expansion of the dependent
variables. This is motivated on the one hand by the free-stream results from the
previous section, and on the other hand by the suitability of this orthogonal basis for
numerical purposes. Lin & Malik (1996) used a Taylor series to discretize the global
stability problem in the chordwise direction which does not result in an advantageous
numerical method since it is not based on an orthogonal basis. To expand the global
stability problem (2.4), we therefore substitute the expansions

û(x, y) =

∞∑
n=0

ũn(y)Hen(x), (3.2a)

v̂(x, y) =

∞∑
n=0

ṽn(y)Hen(x). (3.2b)

We used the normalized form Hen(x) of the Hermite polynomials which are defined
as

Hen(x) =
1

(2π)1/4(n!)1/2
Hen(x), (3.3)

and satisfy the following orthogonality relation:∫ ∞

−∞
e−x2/2Hem(x)Hen(x) dx = δmn. (3.4)

For the chordwise operators in (2.4) we take advantage of the following relations:

∂xHen(x) =
√

n Hen−1(x), (3.5a)

xHen(x) =
√

n + 1Hen+1(x) +
√

n Hen−1(x), (3.5b)

x∂xHen(x) = nHen(x) +
√

n(n − 1) Hen−2(x), (3.5c)
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with similar forms for higher-order derivatives. This eliminates all operators with
respect to the chordwise coordinate direction x.

In the next step we multiply the equations by exp(−x2/2)Hem(x), integrate with
respect to x and make use of the orthogonality relation of Hermite polynomials to
extract equations of order m. We repeat this step for all choices of m =0, 1, 2, . . . .

Finally, exploiting the inherent chordwise symmetry of the governing equation, we
regroup the dependent variables according to their symmetry in x as follows

qe = (q0, q2, q4, . . .)
T , (3.6)

qo = (q1, q3, q5, . . .)
T , (3.7)

with

q0 = (ũ0), q1 = (ũ1, ṽ0)
T , q2 = (ũ2, ṽ1)

T , . . . . (3.8)

Owing to the recurrence relations (3.5) the above manipulations will yield triangular
operator matrices. We obtain



P0,0 P0,2 P0,4

P2,2 P2,4 P2,6

. . .
. . .

. . .
. . .

. . .

. . .

P1,1 P1,3 P1,5

P3,3 P3,5 P3,7

. . .
. . .

. . .
. . .

. . .

. . .




(
qe

qo

)

= iβRe c




Q0,0 Q0,2

Q2,2 Q2,4

. . .
. . .
. . .

Q1,1 Q1,3

Q3,3 Q3,5

. . .
. . .
. . .




(
qe

qo

)
, (3.9)

where

Pm,n =




S0,n for m = 0, n = 0

(S0,n−1 S0,n) for m = 0, n > 0(
Rm−1,n−1 Rm−1,n

Sm,n−1 Sm,n

)
for m > 0, n > 0,
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Qm,n =




a0,0β
2 for m = n = 0

(−a0,1∂y 0) for m = 0, n = 2(
am−1,0

(
β2 − ∂2

y

)
−am−1,1∂y

0 am,0β
2

)
for m = n > 0(

0 0
−am,1∂y −am,2

)
for m = (n − 2) > 0,

with

Rm−1,m−1 = am−1,0

[
(Ly + (m − 2)V ′)

(
∂2

y − β2
)

+ (m − 1)V ′′∂y + iβReW ′′],
Rm−1,m = am−1,1[(Ly + (m − 2)V ′)∂y + (m − 1)V ′′ − iβReW ′],

Rm−1,m+1 = am−1,2

[
(1 + V ′)

(
∂2

y − β2
)

+ V ′′∂y

]
,

Rm−1,m+2 = am−1,3[(1 + V ′)∂y + V ′′],

Sm,m−1 = am−1,1[−β2V ′′],

Sm,m = am,0[−β2(Ly + (m + 1)V ′)],

Sm,m+1 = am,1[(Ly + (m + 1)V ′)∂y + iβReW ′ − β2V ′′],

Sm,m+2 = am,2[(Ly + (m + 1)V ′) − β2(1 + V ′)],

Sm,m+3 = am,3[(1 + V ′)∂y],

Sm,m+4 = am,4[1 + V ′],

and

Ly = ∂2
y − V ∂y − β2 − iβReW,

am,n =

√
(m + n)!

m!
.

The matrices in (3.9) are triangular and the set of eigenvalues for (3.9) is equivalent
to the union of the eigenvalues of the diagonal terms. It is therefore sufficient to solve
for the eigenvalues of each diagonal block separately. Each one of these separated
eigenvalue problems yields a set of eigenfunctions {qm} = {(ũm, ṽm−1)}. Substituting
these eigensolutions back into the global system (3.9) results in forced solutions for all
qm−2j and trivial solutions for all other qn. Thus, there is a finite number of non-zero
Hermite coefficients, which is equivalent to the important fact that all modes are
polynomials in x. One exception to this finding will be presented in the conclusions.

In the following sections we present numerical solutions of (3.9). The wall-normal
operators are discretized using a Chebyshev spectral collocation method with a
rational map of the semi-infinite domain onto the interval [−1, 1] (see Boyd 1982,
1987).

4. Numerical results
To find the eigenvalues c of the global stability problem it suffices to obtain the

eigenvalues of the block diagonal systems of (3.9).
The eigenvalue problem of order N is[

∂2
y − V ∂y − β2 + (N + 1)V ′ − iβReW

]
ûN + V ′′v̂N−1 = −iβRe c ûN , (4.1a)[(

∂2
y − V ∂y − β2 + (N − 2)V ′ − iβReW

)(
∂2

y − β2
)

− V ′′∂y − NV ′′′ + iβReW ′′]v̂N−1

− 2N (V ′′ + V ′∂y)ûN = −iβRe c
(
∂2

y − β2
)
v̂N−1, (4.1b)
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with the boundary conditions

ûN = v̂N−1 = ∂yv̂N−1 = 0 at y = 0 and ∞.

This system of equations is equivalent to the block diagonal subsystems of (3.9).

4.1. Asymptotic behaviour as y → ∞
To arrive at asymptotic results we let y tend to infinity and omit the exponentially
small terms in (4.1) as we did in § 2.1 for the global problem. We obtain[

∂2
y + y∂y − β2 − (N + 1) − iβRe(1 − c)

]
ûN = 0, (4.2a)[

∂2
y + y∂y − β2 − (N − 2) − iβRe(1 − c)

](
∂2

y − β2
)
v̂N−1 = −2N∂yûN . (4.2b)

These equations can be transformed into parabolic cylinder equations. Moreover,
(4.2a) is homogeneous. The solution of this equation yields an inhomogeneity for
(4.2b). We obtain an intermediate result that can be expressed in terms of parabolic
cylinder functions Dν(y) as follows:(

ûN(
∂2

y − β2
)
v̂N−1

)
a

∼ e−y2/4

(
D−ν−1(iy)

−iN (1 + ν)D−ν−2(iy)

)
, (4.3a)

(
ûN(

∂2
y − β2

)
v̂N−1

)
b

∼ e−y2/4

(
Dν(y)

−NDν+1(y)

)
, (4.3b)

(
ûN(

∂2
y − β2

)
v̂N−1

)
c

∼ e−y2/4

(
0

D−ν−4(iy)

)
, (4.3c)

(
ûN(

∂2
y − β2

)
v̂N−1

)
d

∼ e−y2/4

(
0

Dν+3(y)

)
, (4.3d)

with

ν = −[N + 2 + β2 + iβRe(1 − c)].

As a final step we have to invert the operator (∂2
y − β2). Although this task is

straightforward and the solution can be expressed in terms of integrals, it is more
useful to give the leading-order behaviour of the solutions as y → ∞. There are
now six fundamental solutions due to the two additional homogeneous solutions of
(∂2

y − β2)v̂N−1 = 0. We find(
ûN

v̂N−1

)
a

∼
(

y−ν−1

iNβ−2(1 + ν)y−ν−2

)
,

(
ûN

v̂N−1

)
b

∼
(

yνe−y2/2

−Nyν−1e−y2/2

)
, (4.4a, b)

(
ûN

v̂N−1

)
c

∼
(

0

y−ν−4

)
,

(
ûN

v̂N−1

)
d

∼
(

0

yν+1e−y2/2

)
, (4.4c, d)

(
ûN

v̂N−1

)
e

∼
(

0

eβy

)
,

(
ûN

v̂N−1

)
f

∼
(

0

e−βy

)
. (4.4e, f )

Up to differences in the solutions for v̂N−1 this is the generalized form of the
asymptotic solutions that were given by Hall et al. (1984).

The solutions (4.4a, b) are homogeneous solutions of (4.2a) and particular solu-
tions of (4.2b), and (4.4c–f ) are homogeneous solutions of (4.2b). The two exponential
solutions (4.4e, f ) correspond to the case where the chordwise vorticity ψ̂ vanishes
outside the boundary layer.
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In (4.4a–d ) we recognize the algebraic and super-exponential decay in y of the
free-stream solutions (2.12). The trivial case of the free-stream solutions corresponds
to (4.4e, f ).

The solution (4.4e) has to be discarded since it grows without bounds as y → ∞;
(4.4b, d, f ) will always satisfy the homogeneous boundary condition. The algebraically
decaying solutions (4.4a, c) are only valid for negative exponents. This yields a
constraint on the eigenvalues c = cr + ici for the algebraically decaying modes,

ci < −N + 1 + β2

βRe
for (ûN , v̂N−1)a (4.5a)

ci < −N − 2 + β2

βRe
for (ûN , v̂N−1)c, (4.5b)

from which we conclude that unstable algebraically decaying modes of type (4.4c)
are possible for N = 1 but for no other choice of N . There is no constraint on cr .
For cr =1 the exponents are real and we obtain waves travelling with the free-stream
sweep flow decaying algebraically far away from the wall. For cr 	= 1 the exponents
have imaginary parts and the solutions oscillate in y as exp[iβRe(1 − cr ) ln y] with a
decaying amplitude.

By studying the asymptotic behaviour of the eigenvalue problem (4.1) we have found
five different fundamental solutions. We can classify these solutions into algebraically,
exponentially, and super-exponentially decaying solutions. We will now proceed to
study numerical solutions of the separated eigenvalue problems for different orders N .
The asymptotic results will help us to understand and classify the numerical solutions.

4.2. Uniform modes

The simplest case is N = 0. The wall-normal velocity component v̂ is zero and the
chordwise velocity û0 is a function of y only. From the continuity equation we
know that the spanwise velocity component ŵ is zero as well. Therefore these modes
represent uniform disturbance fields in the chordwise direction with varying amplitude
in the wall-normal and spanwise directions. The eigenvalue problem (4.2) reduces to
a much simpler problem with only one dependent variable,[

∂2
y − V ∂y + V ′ − β2 − iβReW

]
û0 = −iβRe c û0, (4.6a)

û0(0) = û0(∞) = 0. (4.6b)

We transform the dependent variable according to

û0(y) = exp

[
1

2

∫ y

V dy

]
ū(y) ∼ e−y2/4 ū(y)

to obtain the modified eigenvalue problem

ū′′ +
[

3
2
V ′ − 1

4
V 2 − β2 − iβRe(W − c)

]
ū = 0. (4.7)

As before we find that this equation approaches a parabolic cylinder equation in
the limit as y → ∞. One of the two solutions behaves like

ū ∼ D−ν−1(iy)

with ν = −[2 + β2 + iβRe(1 − c)]. As we transform this solution back to û0 we obtain
algebraically decaying solutions of type (4.4a). The constraint (4.5a) on the eigenvalue
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Figure 2. Spectrum of the uniform modes for β = 0.3 and Re= 1000.

c shows us that these modes are stable,

ci < −1 + β2

βRe
< 0.

The second solution of the parabolic cylinder equation,

ū ∼ Dν(y),

represents modes which decay super-exponentially like (4.4b).
Figure 2 shows the spectrum of the uniform modes solved on a grid with Ny =500

collocation points that is stretched toward infinity with half of the collocation points
clustered in the interval [0, yhalf ]. We choose yhalf = 10. The numerically computed
eigenvalues form a line across the complex c-plane with a cusp close to c =1.
Inspection of the eigenfunctions corresponding to the eigenvalues on that line shows
that these are all algebraically decaying solutions of (4.6). The eigenvalues below this
line are mostly algebraically decaying modes as well and we have to assume that the
spectrum of algebraically decaying modes is continuous and covers large areas of the
half-plane below the maximal ci .

If we solve the eigenvalue problem (4.7) instead of (4.6) but still use homogeneous
boundary conditions ū(0) = ū(∞) = 0, we obtain only eigensolutions of type (4.4b)
since the algebraically decaying modes are excluded due to the boundary condition at
infinity. A numerical result (number of collocation points Ny =500, extent of the com-
putational domain ymax = 1000 with half the collocation points in 0 � y � yhalf = 10)
is shown in figure 3.

We find that besides seven discrete modes c0, . . . , c6 there is a continuous line
spectrum along cr = 1, ci < 0 which is represented numerically by the vertical line
originating near cr = 1, ci ≈ 0. The eigenfunctions of the seven discrete modes are
shown in figure 4. The maximum amplitude moves farther away from the wall with
increasing real part of the eigenvalue. This is consistent with the concept of the critical
layer yc determined by W (yc) = cr (see Drazin & Reid 1981).

We can study the decay in the wall-normal direction of the discrete modes by plott-
ing the solutions ū(y) on a logarithmic scale (figure 5). From the asymptotic solution
(4.4b) we expect super-exponential decay. However, it appears that the eigenfunctions
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Figure 3. Spectrum of the exponentially decaying uniform modes for β = 0.3 and Re= 1000.

decay exponentially outside the boundary layer. Except for the slowest decaying mode
c6, the onset of the super-exponential decay is below numerical accuracy and therefore
cannot be seen in figure 5. Obviously, there is an interval where exponential decay
is observed, before the super-exponential decay begins. We interpret this interval as
an internal layer between the boundary layer solution and the parabolic cylinder
function of the outer layer.

In order to explain this internal layer we take a closer look at (4.7). For βRe|1 −
c| � 1, the term iβRe(W − c) dominates the other terms in the square bracket of (4.7)
for 1 � y � 2(βRe|1 − c|)1/2. The internal layer solution ūi is therefore governed by
the equation

ū′′
i − iβRe(1 − c)ūi = 0, (4.8)

where we have replaced W by 1, since the internal layer is outside the boundary layer.
There are two fundamental solutions. The decaying solution for the internal layer is
given by

ūi = exp
(
−[iβRe(1 − c)]1/2y

)
. (4.9)

The internal-layer solution is shown in figures 5 and 6 for the slowest decaying
mode c6. Clearly, the internal-layer solution (4.9) is a good approximation to the
eigenfunction. It is also noteworthy that the upper limit of the internal layer interval
(at y ≈ 22.61; not shown in figure 5) provides a good estimate for the onset of the
super-exponential decay. Three additional results can be stated from our analysis of
the internal layer.

(a) There is a square-root branch cut in the complex c-plane originating from the
exponent of the internal-layer solution (4.9). The branch point is at c =1. This branch
cut is associated with the continuous line spectrum (see also Gustavsson 1979).

(b) On the branch cut along cr =1, ci < 0 neither solution of (4.8) decays.
(c) For the algebraically decaying modes there is no internal layer, thus there is

no branch cut and eigenvalues with cr > 1 exist. Eigenvalues with cr > 1 relate to the
concept of leaky waves (P. Luchini, private communication; Marcuse 1991).

We complete our discussion of the uniform modes by comparing the solutions for
different values of β and Re. We find that the solutions are to first order a function
of βRe since for Re � β – which is the case for the studied parameter range – the
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Figure 4. Absolute value (——), and real (– – –), and imaginary (· · ·) parts of the eigen-
functions of the discrete uniform modes (a) c0, (b) c1, . . . , (g) c6 for β = 0.3 and Re =1000.

contribution of β2 in (4.7) is negligible. Figure 7 shows a scatter plot of the location
of the first four discrete eigenvalues for different values of βRe. The location of the
eigenvalues approximately obeys the power law

c ∝ (βRe)−1/3. (4.10)

4.3. Görtler–Hämmerlin modes

For N = 1 we obtain the classical Görtler–Hämmerlin eigenvalue problem first
discussed by Hämmerlin (1955) and Görtler (1955) for the (unswept) plane case, and
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Figure 5. Absolute value |ū| (——) of the seven discrete modes for β = 0.3 and Re= 1000,
and the internal-layer solution for the slowest decaying eigenfunction (· · ·).
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Figure 6. Absolute value (——), and real (– – –), and imaginary (· · ·) parts of the most stable
discrete uniform mode c6 for β = 0.3 and Re= 1000, and the real part of the internal-layer
solution (– · –).
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Figure 7. Scatter plot of the real (•) and negative imaginary parts (×) of the first four
discrete modes for different values of βRe, compared to (βRe)−1/3 (– – –).
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Figure 8. Spectrum of the Görtler–Hämmerlin modes for β = 0.3 and Re =1000.

later by Hall et al. (1984) for the (swept) three-dimensional case. A numerical solution
for the eigenvalues for β =0.3 and Re =1000 is shown in figure 8. It was computed
on a grid with 250 points stretched toward infinity with yhalf = 10. We observe similar
phenomena to those in the uniform case (N = 0). There are two distinct spectra of
algebraically decaying modes forming lines across the complex c-plane with cusps at
cr = 1. One spectrum corresponds to modes that decay like (4.4a), i.e. both velocity
components decay algebraically. The other spectrum corresponds to solutions of type
(4.4c) where only v̂0 decays algebraically and û1 vanishes super-exponentially outside
the boundary layer. The latter contains unstable modes. The Görtler–Hämmerlin
problem is the only choice for N that supports unstable algebraically decaying
modes. Figure 9 shows eigenfunctions of the two algebraic spectra together with their
asymptotic solutions (4.4a, c). For the modes of type (4.4c) the wall-normal velocity
component is dominant. For the modes of type (4.4a) the amplitude of û1 eventually
exceeds the amplitude of v̂0 due to its slower decay rate.

Since the algebraic modes cover large areas of the complex c-plane it is difficult
to extract and study other modes. We therefore transform the dependent variables
according to (

û1

v̂0

)
= e−αy

(
ū1

v̄0

)
, (4.11)

where we choose 0 <α <β . Under this transformation algebraically decaying modes
will not satisfy the homogeneous boundary conditions at infinity and we obtain a
spectrum as shown in figure 10 (Ny = 100, yhalf = 1, α =0.1).

There are three distinct branches of discrete modes. The upper branch contains the
unstable mode, i.e. the Tollmien–Schlichting mode, with a phase velocity of 0.3574
and a growth rate of 0.006126. All eigenfunctions of this branch show a strong
dominance of the wall-normal velocity component over the chordwise velocity. The
amplitude of the chordwise velocity reaches approximately 1% of the maximum
amplitude of the wall-normal velocity component (figure 11a). The next lower branch
contains eigenvalues that are at nearly the same locations as the discrete uniform
modes. The û1 component of the corresponding eigenfunctions matches the uniform
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Figure 9. Absolute values of eigenfunctions for (a) c = 1.00854 − i 0.0018181 (type 4.4c), and
(b) c = 0.998098 − i 0.0101945 (type 4.4a) for β = 0.3 and Re= 1000: ——, |û1|; – – –, |v̂0|; · · ·,
asymptotic solutions.
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Figure 10. Spectrum of the exponentially decaying Görtler–Hämmerlin modes for β = 0.3
and Re= 1000; the upper, lower, and uniform branches are highlighted by dashed lines.

eigenfunctions closely, whereas v̂0 is small compared to û1 inside the boundary layer
and dominates only in the free stream (figure 11b). We will refer to this branch as
the uniform branch. Finally, there is the lower branch which contains modes similar
to the upper branch in the sense that the chordwise velocity is small compared to the
wall-normal velocity (figure 11c).
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Figure 11. Absolute values of Görtler–Hämmerlin eigenfunctions for (a) c = 0.3574+
i 0.006126 (Tollmien–Schlichting mode), (b) c =0.2071 − i 0.1223 (least-stable mode of the
uniform branch), and (c) c = 0.2917 − i 0.2765 (least stable mode of lower branch) for β = 0.3
and Re= 1000: ——, |û1|; – – –, |v̂0|.

We observe two branches of a continuous spectrum. Their exact location could
not be determined numerically nor analytically. However, from what we have learned
about the continuous line spectrum in the uniform case (N = 0), it is reasonable
to assume their correct location to be cr =1, ci < 0. The eigenfunctions of these
continuous line spectra show a dominance of either the chordwise or wall-normal
velocity. Therefore, we relate the continuous line spectra to either the uniform branch
or the upper and lower branches corresponding to the dominant velocity.

All modes in the spectrum shown in figure 10 decay exponentially in v̂0 and super-
exponentially in û1, i.e. like a linear combination of (4.4a) and (4.4f ). No modes could
be found that decay super-exponentially for both û1 and v̂0. At least one component
must decay either algebraically or exponentially.

We again conclude this section by studying the influence of the parameters β and
Re on the location of the eigenvalues. We find that the eigenvalues of the uniform
and the lower branches are proportional to (βRe)−1/3 which is identical to the result
(4.10) found for the uniform case (N = 0). The eigenvalues of the upper branch do
not follow this simple law. The complex dependence of the eigenvalues of the upper
branch on the parameters β and Re is demonstrated in figure 12. It shows the paths
the Tollmien–Schlichting mode takes as β changes its value continuously for different
values of Re. We detect a range of parameters β and Re for which the Tollmien–
Schlichting mode is unstable. The neutral stability curve shown in figure 13 defines
this parameter range. Such a curve was first presented by Hall et al. (1984).

4.4. Higher-order modes

The spectra for higher values of N show the same qualitative structure as the Görtler–
Hämmerlin spectrum. There are two continuous spectra of algebraically decaying
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Figure 12. Path of the locus of the Tollmien–Schlichting mode for β ranging from 0.1 to 0.8
and Re held constant at the values Re =400, 800, . . . , 4000; lines for constant β are dashed;
the rightmost curve is for Re= 400; as β increases the eigenvalue moves along the curves in a
clockwise direction.
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Figure 13. Neutral stability curve for the swept Hiemenz flow. The contour values of the
growth rate range from −0.05 to +0.02 with a contour spacing of 0.005. The shaded area
represents parameter values that result in an exponential instability.

modes, two continuous line spectra, and the three branches of discrete modes in
approximately the same position relative to each other. A significant difference with
the Görtler–Hämmerlin spectrum is that the whole spectrum is shifted to lower
imaginary values, i.e. higher-order modes are more damped. This is obvious for the
algebraically decaying modes for which we showed that their spectrum is bounded by
(4.5). This bound decreases linearly with increasing N . For the exponentially decaying
modes there is no such bound and we have to rely on numerical evidence in the form
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Figure 14. The ten least stable discrete eigenvalues for N = 0, 1, . . . , 100, β = 0.3, Re= 1000;
the upper, lower, and uniform branches for N = 1 are highlighted by dashed lines.

of figure 14, where discrete eigenvalues for N = 0, 1, . . . , 100 are shown. The figure
suggests that as N is increased the discrete modes move to lower imaginary values.

Figures 15 and 16 show several eigenfunctions and their lower-order forced solu-
tions for N = 4 and N = 5. The eigenfunctions {qN} = {ûN , v̂N−1} show the same
characteristics as the Görtler–Hämmerlin eigenfunctions: the decay of the algebraic
eigenfunctions follows (4.4a, c). The discrete modes and the modes of the continuous
line spectra decay super-exponentially in ûN and exponentially in v̂N−1 like (4.4f ).
The chordwise velocity component is predominant inside the boundary layer for
the modes of the uniform branch and vice versa for the modes of the upper and
lower branches. Note the similar shape of the corresponding eigenfunctions (û1, v̂0)
in figures 11(a, b), (û4, v̂3) in figures 15(a, b), and (û5, v̂4) in figures 16(a, b).

The decay of the forced lower-order solutions does not follow the asymptotic
expressions (4.4). The decay of both lower-order velocity components of the discrete
modes is governed by exp(−βy) and they have larger amplitudes than the eigenfunc-
tions. As we proceed from the eigenfunctions {qN} to lower orders, {qN} �→ {qN−2} �→
{qN−4} �→ . . . , the solutions are increasingly amplified. The lowest-order solutions –
either {q0} for N even or {q1} for N odd – are the most amplified.

We obtain similar results for the algebraically decaying modes (figures 15c, d and
16c, d). The lower-order solutions are again amplified and both velocity components
decay algebraically. The lower-order solutions of modes of type (4.4a) maintain the
decay rate of the corresponding eigenfunction, whereas the lower-order solutions of
type (4.4c) decay like y−ν−5 and y−ν−6, respectively.

As we reassemble the modal solutions into a flow field (û(x, y), v̂(x, y)) we observe
a distinct pattern of the predominant direction of the flow field for discrete modes of
even and odd orders N . We distinguish between four different regions in the flow field:

(a) Close to the attachment line (x = O(1), y = O(1)) the direction of the flow is
governed by the lowest-order solution q0 or q1, respectively. In even modes the
chordwise velocity therefore dominates; for odd N the predominant direction of the
flow is chordwise for modes of the uniform branch and wall-normal for modes from
the upper and lower branches.

(b) As we move away from the wall while keeping x moderate (x =O(1), y � 1) the
asymptotic decay of the lowest-order solution determines the predominant direction
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û0

û4
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û4

v̂1

v̂3

v̂1

v̂3

v̂1 v̂3

v̂1
v̂3

10–1 100

0 5 10 15 20

Figure 15. Eigenfunctions for N = 4, β = 0.3, Re= 1000: (a) Tollmien–Schlichting mode,
(b) least stable mode of the uniform branch, (c) algebraically decaying mode of type (4.4c),
(d ) algebraically decaying mode of type (4.4a); note the logarithmic scale of the abscissa
in (c) and (d ).

of the flow. For discrete modes with N odd, v̂ dominates; the opposite is true for N

even.
(c) As x becomes large the coefficient of the highest power in x determines the

direction of the flow. The polynomial for û will be one order higher than the
polynomial for v̂. Thus, û will dominate within the boundary layer (x � 1, y = O(1)).

(d) For large x and large y, we have to consider the rate of decay of the highest-
order solutions. Since ûN decays super-exponentially in y for all discrete modes the
contribution of xN vanishes compared to the other terms of lower order in x that
decay only exponentially. Therefore, outside the boundary layer û is governed by a
polynomial of order N − 2 rather than N . The highest term of v̂ is of order N − 1,
so the predominant direction of the flow in this region (x � 1, y � 1) is wall-normal
for both symmetries.
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Figure 16. As figure 15 but for N =5.

x = O(1) x � 1

Boundary layer Free stream Boundary layer Free stream

N even û � v̂ û � v̂ û � v̂ v̂ � û
û � v̂ (uniform branch)

N odd v̂ � û (upper and lower branches) v̂ � û û � v̂ v̂ � û

Table 1. Dominant velocity component in the discrete modes for different orders N and
different locations in the flow field.

These results are summarized in table 1. In general we can state that the even
modes are predominantly chordwise disturbances of the basic flow, whereas the odd
modes disturb the flow mostly in the wall-normal direction.
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5. Validity of the linear approximation
We must not forget that we have to take great care when linearizing the Navier–

Stokes equations, particularly for higher-order modes (N > 1), as the validity of the
linear approximation is compromised by two different effects. We will derive two
relations that constrain (a) the amplitude of the disturbance and (b) the chordwise
domain of validity for linear modes.

Before we derive these two constraints we have to quantify an observation made
in the previous section. We saw that within a single mode the forced lower-order
solutions have an increasingly higher amplitude (see, for example, figures 15 and 16).
The reason for this becomes clear if we note that the right-hand side of the lower-order
equations, i.e. the forcing term, consists of chordwise derivatives of the higher-order
solutions. We can relate the coefficients of different orders as follows:

ûm

ûn

= O

(
n!

m!

)
, (5.1)

with the same relation for the wall-normal velocity components v̂n. For clarity we will
develop our arguments for the chordwise velocities ûn only.

In § 2 we perturbed the laminar flow by small velocities (u′, v′, w′) which we take
of O(ε). From (5.1) it follows that

û0 = O(ε), ûn = O

(
ε

n!

)
.

In the balance of order n we have a typical linear term of the form Re−1Uûn

that we will compare to nonlinear terms of the same order in x of the general form
vn−k∂yuk (k = 0, . . . , N). We require the nonlinear terms to be small compared to the
linear terms. With the help of the relations above this requirement translates to

ε

Re n!
� ε2

(n − k)!k!
.

This relation must be satisfied for all k and n ranging from 0 to N . The necessary
and sufficient condition for this is

ε � (N/2)!2

ReN!
. (5.2)

By satisfying this constraint we ensure that equations up to order N can be
linearized. However, this is not sufficient since there are also nonlinear terms of
orders N + 1, . . . , 2N − 1. To ensure that they remain small we have to bound the
spatial domain of validity in the chordwise direction. We derive an explicit constraint
by comparing linear terms of the form Re−1Uûk to the nonlinear terms v̂m∂yûn. We
then obtain the relation

ε
xk

Re k!
� ε2 xm+n

m! n!
,

with k =0, . . . , N , n= 1, . . . , N , and m = N + 1 − n, . . . , N . We obtain a necessary and
sufficient condition for k = N , n= N/2, and m = N/2, in the form

x � (N/2)!2

ε Re N!
. (5.3)

The constraint (5.2) ensures that the right-hand side of (5.3) is large.
With the two constraints (5.2) and (5.3) the validity of the linear modes is clearly

defined. Appropriate values of ε Re lie below the curve shown in figure 17. The curve
decays rapidly, and physically relevant amplitudes ε can only be justified for small N .
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Figure 17. Bounding values of the constraint (5.2) for different values of N ; valid choices
for the disturbance amplitude ε have to lie sufficiently far beneath the curve shown.

The chordwise domain of validity is determined by the distance between the chosen
ε and the curve. This distance corresponds to the logarithm of the right-hand side of
(5.3). Thus, the farther the distance the larger the chordwise domain of validity.

To complete the discussion we should mention two important cases with different
constraints. First, the uniform modes are solutions to the full Navier–Stokes equations.
Thus, they are valid for any amplitude and over the entire spatial domain. Second,
in the classical Görtler–Hämmerlin problem (N = 1) there is no constraint on the
chordwise domain, since there are no nonlinear terms of order greater than 1. The
only constraint is on the amplitude with ε � Re−1.

6. Summary and conclusions
We have studied the temporal stability problem of swept attachment-line boundary

layers modelled by the swept Hiemenz equations. Starting with the global stability
problem, a Hermite expansion has been identified by an asymptotic analysis as an
advantageous transformation to convert the global stability problem into local (but
coupled) stability problems. This coupling of the local stability problems has con-
sequences for the eigenfunctions of higher-order modes and limits the validity of the
linearization process that generated the governing equations in the first place.
Estimates of the region of validity for both the amplitude and the chordwise extent
have been presented.

The spectrum of the local stability problems showed a high degree of complexity
which posed challenges to the numerical method as well as to the physical inter-
pretation.

Nevertheless, the governing equations and the spectrum also revealed a substantial
amount of structure that aided in the classification of modes by their symmetry (even
versus odd), their order N (uniform, Görtler–Hämmerlin, higher-order) and their
asymptotic behaviour (algebraic, exponential or super-exponential decay in the free
stream). Table 2 summarizes these results.

For N = 0 we derived the uniform problem which serves as a prototype for the
higher-order modes. It contains many of the main features of the global problem
and its simple form makes it attractive for analytic studies. Algebraically and
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Order Eigenvalues Eigenfunctions

N = 0 (uniform
modes)

continuous spectrum algebraic decay ∼ y−ν−1; standing
waves in y travelling with the
free-stream sweep flow

continuous line spectrum at
cr = 1, ci < 0

super-exponential decay
∼ yν exp(−y2/2); maximum at edge
of sweep flow boundary layer;
standing waves in y travelling with
the free-stream sweep flow; internal
layer ∼ exp[±(βRe(1 − c))1/2 − y2/4]

discrete modes; c ∝ (βRe)−1/3 super-exponential decay
∼ yν exp(−y2/2); maximum inside
boundary layer; internal layer
∼ exp[±(βRe(1 − c))1/2 − y2/4]

N = 1 (Görtler–
Hämmerlin
modes)

2 continuous spectra, bounded
by ci < −(β2 + 2)/(βRe) for
type (4.4a), and ci <
−(β2 − 1)/(βRe) for type (4.4c)

decay like (4.4a, c); type (4.4c) reaches
into unstable half-plane

continuous line spectrum at
cr = 1, ci < 0

decay like (4.4f ); û0 dominates

continuous spectrum decay like (4.4f ); v̂0 dominates

discrete spectrum: upper branch Tollmien–Schlichting mode; decay like
(4.4f ); v̂0 dominates

discrete spectrum: uniform
branch; c ∝ (βRe)−1/3

decay like (4.4f ); û1 dominates

discrete spectrum: lower branch;
c ∝ (βRe)−1/3

decay like (4.4f ); v̂0 dominates

N even same structure as Görtler–
Hämmerlin spectrum, but
shifted to lower ci; algebraic
spectra bounded by
ci < −(β2 + N + 1)/(βRe), and
ci < −(β2 + N − 2)/(βRe)

highest order shows same
characteristics as Görtler–
Hämmerlin modes; lower order
forced solutions have a larger
amplitude, both velocity
components decay like exp(−βy) or
algebraically; û0 dominates close to
the attachment-line

N odd same structure as Görtler–
Hämmerlin spectrum, but
shifted to lower ci; algebraic
spectra bounded by
ci < −(β2 + N + 1)/(βRe), and
ci < −(β2 + N − 2)/(βRe)

highest order shows same
characteristics as Görtler–
Hämmerlin modes; lower order
forced solutions have a larger
amplitude, both velocity
components decay like exp(−βy) or
algebraically

Table 2. Classification of the eigensolutions.

super-exponentially decaying modes were found where the super-exponentially
decaying modes resemble a discrete Orr–Sommerfeld spectrum for a typical wall-
bounded shear flow.

For N = 1, the Görtler–Hämmerlin problem is recovered. Its most important feature
is the existence of a Tollmien–Schlichting mode. In addition, it contains two new types
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of mode: a second type of algebraically decaying mode and modes with exponential
decay.

Higher-order modes (N > 1) reflect many features of the uniform and the Görtler–
Hämmerlin modes; it was shown that even higher-order modes have a predominantly
chordwise character, whereas odd modes have mostly a wall-normal character.

Algebraically decaying modes constitute the continuous spectrum which is needed
for a complete description of the stability problem (similar to Blasius boundary layer
flow; see Grosch & Salwen 1978). The exact location of the continuous spectrum
remains an open question, but upper bounds for the growth rates are given in this
study. We have to assume for now that the continuous spectrum covers large areas of
the complex half-plane below this upper bound, but more work needs to be directed
towards the exact location and role of the continuous spectrum.

In the light of the rich and complex structure of the spectrum it is instructive
and desirable to use the initial-value problem governing the evolution of infinitesimal
perturbations in the swept attachment-line boundary layer. This analysis is expected
to shed further light on the interplay of discrete and continuous modes, on the role
of various parts of the spectrum, and on the link between free-stream and boundary
layer solutions. The companion paper (Obrist & Schmid 2003) will address certain
issues related to the initial-value approach; a more comprehensive investigation is left
for a future effort.

In connection with linear stability theory one often distinguishes the temporal and
spatial problem. In the temporal problem we are interested in the evolution of the
initial condition in time (initial value problem) whereas in the spatial problem we
study the evolution of an inflow boundary condition in space (signalling problem).
Gaster (1962) showed how temporal and spatial eigenvalues in the vicinity of the
neutral curve are related to each other.

The temporal treatment of the stability problem addresses the situation where
atmospheric disturbances enter the leading-edge area directly or are otherwise
(impulsively) created inside the leading-edge boundary layer. The (spanwise) spatial
stability problem examines the evolution of disturbances that originated upstream
along the leading edge or even at the wing–fuselage junction (as suggested by Gaster
1965).

The present study has been concerned with the temporal stability problem, assuming
a real spanwise wavenumber β and a specified spatial evolution in the chordwise
direction, and solved for the temporal growth rate and phase velocity. To address the
spatial evolution of disturbances by stability theory, two types of spatial growth are
conceivable.

Assuming the frequency ω to be real and allowing the spanwise wavenumber β to
take complex values addresses the spatial evolution of disturbances in the spanwise
z-direction. This path has been taken by Joslin (1995) and Theofilis (1995) using
direct numerical simulations. The corresponding spatial stability problem (4.1) poses
an eigenvalue problem for β where β also appears quadratically. To obtain a linear
eigenvalue problem a companion matrix technique has to be applied (see Lundbladh
et al. 1994). The study of the spanwise spatial stability problem is beyond the scope
of this study and will be left as a future effort.

Alternatively, one can also study the spatial evolution of disturbances in the
chordwise direction. The order N of the Hermite polynomial takes the meaning of a
streamwise wavenumber since Hermite polynomials (rather than exponentials) yield
separability of the chordwise dependence. It is natural then to allow complex values
of the polynomial order N to describe the spatial evolution of perturbations within
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the mathematical framework presented here. We generalize the series expansion (3.2)
as follows:

û(x, y) =

∞∑
n=0

ũn(y) ex2/2DN−n(x), (6.1)

v̂(x, y) =

∞∑
n=0

ṽn(y) ex2/2DN−n(x), (6.2)

where DN−n(y) are parabolic cylinder functions to allow for complex values of
N. If N is a positive integer we recover the truncated Hermite series (3.2), since
HeN (x) = exp(x2/2)DN (x).

Bertolotti (1999) explored the spatial stability problem in this direction and found
a new class of modes that are not polynomials in x. Setting c =0 he found modal
solutions that decay like x−N as x → ∞. When c coincides with one of the temporal
eigenvalues the polynomial modes discussed in the previous sections are readily
recovered. In the light of these findings, we have to restrict our previous statement –
that all eigenfunctions are chordwise polynomials – to the eigenfunctions of the
temporal problem.

We believe we have presented a mathematically rigorous and complete description
of the temporal spectrum for swept attachment-line boundary flow which will lay the
foundation for the analysis of non-modal effects and receptivity (Obrist & Schmid
2003) and should prove helpful in studying transition and flow control in swept
attachment-line boundary layers.
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Görtler, H. 1941 Instabilität laminarer Grenzschichten an konkaven Wänden gegenüber gewissen
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